头孢他啶-阿维巴坦的PK/PD靶值达标情况及治疗药物监测研究进展

于佳鑫, 左玮, 杨阳, 林子溦, 张波

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (2) : 134-138.

PDF(1115 KB)
PDF(1115 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (2) : 134-138. DOI: 10.11669/cpj.2023.02.007
综述

头孢他啶-阿维巴坦的PK/PD靶值达标情况及治疗药物监测研究进展

  • 于佳鑫1, 左玮1, 杨阳1, 林子溦1,2, 张波1*
作者信息 +

PK/PD Target Attainment and the Research Progress in Therapeutic Drug Monitoring of Ceftazidime/Avibactam

  • YU Jia-xin1, ZUO Wei1, YANG Yang1, LIN Zi-wei1,2, ZHANG Bo1*
Author information +
文章历史 +

摘要

多重耐药革兰阴性菌感染的危重症患者,因个体间药动学(PK)参数差异较大,接受说明书推荐给药剂量的β-内酰胺类抗菌药物治疗,其药动学/药效学(pharmacodynamics,PD)靶值[1~4×最小抑菌浓度(MIC)<100% f T<8 MIC,100% f T>4~5 MIC时疗效更佳]的达标率较低,可能出现治疗失败以及增加细菌耐药的风险。笔者通过查阅国内外相关文献,对不同人群头孢他啶-阿维巴坦PK/PD靶值达标率、达标率提高方法及治疗药物监测等方面进行综述。结果发现增加给药剂量、延长输注时间(>3 h)、延长输注时间前增加负荷剂量(如2 g)等给药方案的调整可以提高患者PK/PD靶值的达标率。同时,对于危重症患者,推荐进行治疗药物监测,确保患者体内药物浓度达到理想靶值,改善临床结局。

Abstract

Due to the significant inter-individual difference of PK parameters, the rate of PK/PD target (1-4×MIC<100% f T<8 MIC,100% f T>4-5 MIC is better) attainment of ceftazidime/avibactam at recommended dose was lower for critically ill patients with multiple drug-resistant Gram-negative bacteria infection. Patients may finally develop treatment failure and have increased risk of bacterial resistance. This paper reviewed the rate of PK/PD target attainment, corresponding methods to improve it, and therapeutic drug monitoring of ceftazidime/avibactam by reviewing the relevant domestic and international literatures. To improve the rate of PK/PD target attainment, the administration of ceftazidime/avibactam can be adjusted by increasing dosage, prolonging infusion time (>3 h) and giving a loading dose (2 g) before extending the infusion time. In addition, it is recommended to conduct therapeutic drug monitoring for critically ill patients and adjust treatment regimen timely to ensure that drug concentration in vivo can reach the target value thus to improve clinical outcome.

关键词

头孢他啶-阿维巴坦 / 药动学/药效学靶值 / 达标率 / 治疗药物监测

Key words

ceftazidime-avibactam / PK/PD target / attainment rate / therapeutic drug monitoring

引用本文

导出引用
于佳鑫, 左玮, 杨阳, 林子溦, 张波. 头孢他啶-阿维巴坦的PK/PD靶值达标情况及治疗药物监测研究进展[J]. 中国药学杂志, 2023, 58(2): 134-138 https://doi.org/10.11669/cpj.2023.02.007
YU Jia-xin, ZUO Wei, YANG Yang, LIN Zi-wei, ZHANG Bo. PK/PD Target Attainment and the Research Progress in Therapeutic Drug Monitoring of Ceftazidime/Avibactam[J]. Chinese Pharmaceutical Journal, 2023, 58(2): 134-138 https://doi.org/10.11669/cpj.2023.02.007
中图分类号: R969.1   

参考文献

[1] WENCEWICZ T A. Crossroads of antibiotic resistance and biosynthesis [J]. J Mol Biol, 2019, 431(18):3370-3399.
[2] BLOOS F, RÜDDEL H, THOMAS-RÜDDEL D, et al. Effect of a multifaceted educational intervention for anti-infectious measures on sepsis mortality: a cluster randomized trial [J]. Intensive Care Med, 2017, 43(11):1602-1612.
[3] TSAI D, LIPMAN J, ROBERTS J A. Pharmacokinetic/pharmacodynamic considerations for the optimization of antimicrobial delivery in the critically ill [J]. Curr Opin Crit Care, 2015, 21(5):412-420.
[4] BIDELL M R, LODISE T P. Suboptimal clinical response rates with newer antibiotics among patients with moderate renal impairment: review of the literature and potential pharmacokinetic and pharmacodynamic considerations for observed findings [J]. Pharmacotherapy, 2018, 38(12):1205-1215.
[5] ABDUL-AZIZ M H, ALFFENAAR J C, BASSETTI M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper [J]. Intensive Care Med, 2020, 46(6):1127-1153.
[6] TOOKE C L, HINCHLIFFE P, BRAGGINTON E C, et al. β-lactamases and β-lactamase inhibitors in the 21st century [J]. J Mol Biol, 2019, 431(18):3472-3500.
[7] SHIRLEY M. Ceftazidime-avibactam: a review in the treatment of serious gram-negative bacterial infections [J]. Drugs, 2018, 78(6):675-692.
[8] ZASOWSKI E J, RYBAK J M, RYBAK M J. The β-lactams strike back: ceftazidime-avibactam [J]. Pharmacotherapy, 2015, 35(8):755-770.
[9] ABDULLA A, DIJKSTRA A, HUNFELD N G M, et al. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: a two-center prospective study (EXPAT) [J]. Crit Care, 2020, 24(1):1-12.
[10] ROBERTS J A, PAUL S K, AKOVA M, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? [J]. Clin Infect Dis, 2014, 58(8):1072-1083.
[11] JACOBS A, TACCONE F S, ROBERTS J A, et al. β-lactam dosage regimens in septic patients with augmented renal rlearance [J]. Antimicrob Agents Chemother, 2018, 62(9):e02534-17. Doi: 10.1128/AAC.02534-17.
[12] ROBERTS J A, JOYNT G M, LEE A, et al. The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: data from the multinational sampling antibiotics in renal replacement therapy study [J]. Clin Infect Dis, 2021, 72(8):1369-1378.
[13] PINNER N A, TAPLEY N G, BARBER K E, et al. Effect of obesity on clinical failure of patients treated with β-lactams [J]. Open Forum Infect Dis, 2021, 8(8):ofab212. Doi: 10.1093/ofid/ofab212.
[14] JAGER N G L, VAN HEST R M, LIPMAN J, et al. Antibiotic exposure at the site of infection: principles and assessment of tissue penetration [J]. Expert Rev Clin Pharmacol, 2019, 12(7):623-634.
[15] RICHTER D C, HEININGER A, CHIRIAC U, et al. Antibiotic stewardship and therapeutic drug monitoring of β-lactam antibiotics: is there a link? an opinion paper [J]. Ther Drug Monit, 2022, 44(1):103-111.
[16] FRATONI A J, NICOLAU D P, KUTI J L. A guide to therapeutic drug monitoring of β-lactam antibiotics [J]. Pharmacotherapy, 2021, 41(2):220-233.
[17] AL-SHAER M H, RUBIDO E, CHERABUDDI K, et al. Early therapeutic monitoring of β-lactams and associated therapy outcomes in critically ill patients [J]. J Antimicrob Chemother, 2020, 75(12):3644-3651.
[18] GUILHAUMOU R, BENABOUD S, BENNIS Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d'Anesthésie et Réanimation-SFAR) [J]. Crit Care, 2019, 23(1):1-20.
[19] DHAESE S, VAN VOOREN S, BOELENS J, et al. Therapeutic drug monitoring of β-lactam antibiotics in the ICU [J]. Expert Rev Anti Infect Ther, 2020, 18(11):1155-1164.
[20] ABDULLA A, EWOLDT T M J, HUNFELD N G M, et al. The effect of therapeutic drug monitoring of beta-lactam and fluoroquinolones on clinical outcome in critically ill patients: the DOLPHIN trial protocol of a multi-centre randomised controlled trial [J]. BMC Infect Dis, 2020, 20(1):1-9.
[21] LIEBCHEN U, SALLETMEIER H, KALLEE S, et al. Optimal loading dose of meropenem before continuous infusion in critically ill patients: a simulation study [J]. Sci Rep, 2021, 11(1):1-6.
[22] LI L, LI X, XIA Y, et al. Recommendation of antimicrobial dosing optimization during continuous renal replacement therapy [J]. Front Pharmacol, 2020, 11:580163. Doi: 10.3389/fphar.2020.580163.
[23] SOUKUP P, FAUST A C, EDPUGANTI V, et al. Steady-state ceftazidime-avibactam serum concentrations and dosing recommendations in a critically ill patient being treated for pseudomonas aeruginosa pneumonia and undergoing continuous venovenous hemodiafiltration [J]. Pharmacotherapy, 2019, 39(12):1216-1222.
[24] VEILLETTE J J, TRUONG J, FORLAND S C. Pharmacokinetics of ceftazidime-avibactam in two patients with KPC-producing klebsiella pneumoniae bacteremia and renal impairment [J]. Pharmacotherapy, 2016, 36(11):e172-e177.
[25] WENZLER E, BUNNELL K L, BLEASDALE S C, et al. Pharmacokinetics and dialytic clearance of ceftazidime-avibactam in a critically ill patient on continuous venovenous hemofiltration [J]. Antimicrob Agents Chemother, 2017, 61(7):e00464-17. Doi: 10.1128/AAC.00464-17.
[26] MATUSIK E, LEMTIRI J, WABONT G, et al. Beta-lactam dosing during continuous renal replacement therapy: a survey of practices in french intensive care units [J]. BMC Nephrol, 2022, 23(1):1-10.
[27] FLUME P A, O'SULLIVAN B P, ROBINSON K A, et al. Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health [J]. Am J Respir Crit Care Med, 2007, 176(10):957-969.
[28] BILAL H, TAIT J R, LANG Y, et al. Simulated intravenous versus inhaled tobramycin with and without intravenous ceftazidime evaluated against hypermutable pseudomonas aeruginosa via a dynamic biofilm model and mechanism-based modeling [J]. Antimicrob Agents Chemother, 2022: aac0220321. Doi: 10.1128/aac.02203-21.
[29] BENSMAN T J, WANG J, JAYNE J, et al. Pharmacokinetic-pharmacodynamic target attainment analyses to determine optimal dosing of ceftazidime-avibactam for the treatment of acute pulmonary exacerbations in patients with cystic fibrosis [J]. Antimicrob Agents Chemother, 2017, 61(10):e00988-17. Doi: 10.1128/AAC.00988-17.
[30] ZHANG H L, HUANG Z G, QIU Y, et al. Optimizing vancomycin regimen in children with MRSA infections based on PK/PD model and Monte Carlo simulation [J]. Chin Pharm J(中国药学杂志), 2017, 52(3):217-220.
[31] NICOLAU D P, SIEW L, ARMSTRONG J, et al. Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens [J]. J Antimicrob Chemother, 2015, 70(10):2862-2869.
[32] COWART M C, FERGUSON C L. Optimization of aztreonam in combination with ceftazidime/avibactam in a cystic fibrosis patient with chronic stenotrophomonas maltophilia pneumonia using therapeutic drug monitoring: a case study [J]. Ther Drug Monit, 2021, 43(2):146-149.
[33] THOMPSON R Z, MARTIN C A, BURGESS D R, et al. Optimizing beta-lactam pharmacodynamics against Pseudomonas aeruginosa in adult cystic fibrosis patients [J]. J Cyst Fibros, 2016, 15(5):660-663.
[34] PANDIT R, CHEN L, GÖTZ J. The blood-brain barrier: Physiology and strategies for drug delivery [J]. Adv Drug Deliv Rev, 2020, 165-166: 1-14.Doi: 10.1016/j.addr.2019.11.009.
[35] PENG X, LUO Z, HE S, et al. Blood-brain barrier disruption by lipopolysaccharide and sepsis-associated encephalopathy [J]. Front Cell Infect Microbiol, 2021: 1083.Doi 10.3389/fcimb.2021.768108.
[36] YAU B, HUNT N H, MITCHELL A J, et al. Blood-brain barrier pathology and CNS outcomes in streptococcus pneumoniae meningitis [J]. Int J Mol Sci, 2018, 19(11):3555. Doi: 10.3390/ijms19113555.
[37] GOFMAN N, TO K, WHITMAN M, et al. Successful treatment of ventriculitis caused by and carbapenem-resistant with i.v. ceftazidime-avibactam and intrathecal amikacin [J]. Am J Health Syst Pharm, 2018, 75(13):953-957.
[38] YASMIN M, HANRAHAN J, MARSHALL S, et al. Using therapeutic drug monitoring to treat KPC-producing klebsiella pneumoniae central nervous system infection with ceftazidime/avibactam [J]. Open Forum Infect Dis, 2020, 7(9):ofaa349. Doi: 10.1093/ofid/ofaa349.
[39] HOLYK A, BELDEN V, LEE J J, et al. Ceftazidime/avibactam use for carbapenem-resistant Klebsiella pneumoniae meningitis: a case report [J]. J Antimicrob Chemother, 2018, 73(1):254-256.
[40] XIPELL M, BODRO M, MARCO F, et al. Clinical experience with ceftazidime/avibactam in patients with severe infections, including meningitis and lung abscesses, caused by extensively drug-resistant Pseudomonas aeruginosa [J]. Int J Antimicrob Agents. 2017, 49(2):266-268.
[41] GATTI M, VIRGILI G, COJUTTI P G, et al. Real-time optimization of pharmacodynamic target attainment at infection site during treatment of post-neurosurgical ventriculitis caused by carbapenem-resistant gram negatives with ceftazidime-avibactam-based regimens: a report of two cases [J]. Microorganisms, 2022, 10(1):154. Doi: 10.3390/microorganisms10010154.
[42] GONCETTE V, LAYIOS N, DESCY J, et al. Continuous infusion, therapeutic drug monitoring and outpatient parenteral antimicrobial therapy with ceftazidime/avibactam: a retrospective cohort study [J]. J Glob Antimicrob Resist, 2021, 26: 15-19. Doi: 10.1016/j.jgar.2021.04.015.
[43] BUNING A W, HODIAMONT C J, LECHNER N M, et al. Population pharmacokinetics and probability of target attainment of different dosing regimens of ceftazidime in critically ill patients with a proven or suspected pseudomonas aeruginosa infection [J]. Antibiotics (Basel), 2021, 10(6):612. Doi: 10.3390/antibiotics10060612.
[44] VEIGA R P, PAIVA J A. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients [J]. Crit Care, 2018, 22(1):233. Doi: 10.1186/s13054-018-2155-1.
[45] ULLDEMOLINS M, VAQUER S, LLAURADÓ-SERRA M, et al. Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy [J]. Crit Care, 2014, 18(3):227. Doi: 10. 1186/cc13938.
[46] GAIBANI P, GATTI M, RINALDI M, et al. Suboptimal drug exposure leads to selection of different subpopulations of ceftazidime-avibactam-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in a critically ill patient [J]. Int J Infect Dis, 2021, 113: 213-217. Doi: 10.1016/j.ijid.2021.10.028.

基金

中央高水平医院临床科研业务费资助(2022-PUMCH-B-059)
PDF(1115 KB)

578

Accesses

0

Citation

Detail

段落导航
相关文章

/